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ABSTRACT

A non-linear theory for the equilibrium deformation
of homogeneous lisotropic shells 1s derived and compared
with the classical three dimenslonal non-linear theory
of elasticlty.

To obtain the shell theory, let U1 and U2 be
displacements tangent to the undeformed middle surface and
let U3 be a displacement normal to the middle surface. The
displacement fields considered are restricted by requiring

1

that U" and U2 be nth degree polynomials in 03 and U3 be

3 where 93 1s the undeformed

distance to the middle surface along a normal line. Restrict-

an (n+l)st degree polynomial in ©

ing the displacements in this way, the potential energy of
the shell becomes a functional of the 3n+} coefficients of
the displacement polynomials. Requiring that the potentilal
energy be stationary with respect to variations of the 3n+l
coefficients, gives the equlllibrium equations and surface
traction boundary conditions of the shell theory.

The shell theory is compared with the classical three
dimensional theory by examining the errors which result when
displacements satlsfylng thg equilibrium equations and surface
traction boundary conditions of the shell theory are
substituted into those of the classical three dimensional
theory. Let Eq, Ee and Ef denpte any error resulting from

an equilibrium equation, a surface traction boundary condition

at the edge, and a surface tractlon boundary condition at a
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face, respectively, of the classical theory. It is shown

that Eq, Ee and thelir derivatives have a stated number of

zeros along each line normal to the middle surface, the
number of zeros depending on n and the number of differentia-

tions of the error with respect to © Furthermore, if

3°
the shell thickness and deformatlion are small enough, and

i1f the body forces and surface tractlons at the faces and
their derivatives are small enough, then, at points not too

near the edge, E_, and 1its derlivatives are significantly

f
small if n is large enough, and Eq and 1ts derivatives are
significantly small throughout the thickness 1f n 1s large
enough and there are not too many differentlations of E

q

with respect to © Also, under the previous restrictions,

3
the low degree terms in the displacement polynomials and
thelr derivatives are more significant than the high

degree terms at points not too near the edge (at least this
is always true if the difference in degrees of the two terms

is greater than or equal two).
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INTRODUCTION

- This paper presents a non-linear theory for the equilibrium
deformation of homogeneous isotropic shells and makes a compar-
ison between the shell theory and the classical three dimensional
non-linear theory of elasticity. These are called the shell
theory and the classical theory in the following. In the process
estimates are derived which are of considerable interest in

their own right.

The classical theory may Le obtained by requiring that
the potential energy of the shell be stationary with respect
to all possible displacements. To obtain the shell theory a
restricted set of displacements is admitted into the potential
energy as follows. Let 91 and 92 be parameters for the unde-

formed middle surface. Let'?(ei,ee) be the position vector

to the undeformed middle surface, Ea = é%L(a = 1,2) be tangent
- €% &, >
vectors, and g3 = — be a unit normal vector to the unde-
18, x &5l

formed middle surface. Let 93 be the undeformed distance to
the middle surface along a normal line, the sign of 93 being
chosen so that 93 is positive on the side of the middle surface
towards which E% points and is negative on the other side.

Then the displacement vector U can be expressed in the form

-

u = Ulég_(as usual, Latin indices assume the values 1,2,3;
Greek indices assume the values 1,2; and repeated indices are

summed). For the shell theory only those displacement vectors

1 2

are admitted for which U™ and U are nth degree polynomials in

93 and U3 is an (n+1)st degree polynomial in 6 the coeffi-

3’

cients of the polynomials being functions of 61 and 62. With




this restriction the potential energy becomes a functional of
the 3n+ 4 coefficients of these polynomials. Requiring that
the potential energy be stationary gives the equilibrium
equations and surface traction boundary conditions of the
shell theory.

The shell theory is compared with the classical theory
by examining the errors which result when displacements
satisfying the equilibrium equations and surface traction
boundary conditions of the shell theory are substituted into
the equilibrium equations and surface traction boundary
conditions of the classical theory. In doing this it is
assumed that the displacements satisfying the shell theory
have as many continuous derivatives as desired or needed.
After arranging the equilibrium equations and surface traction
boundary conditions of the classical theory in a convenient
form, Eiq(i = 1,2,3) denotes the errors obtained from the
equilibrium equations, Eie denotes the errors obtained from
the surface traction boundary conditions at the edge, and Eif
denotes the errors obtained from the surface traction boundary
E_, and

q’ Tae
their derivatives have n- k-1 zeros along each line which 1s

conditions at either face. It is shown that E,

normal to the middle surface in the undeformed shell, and EBq’

EBe’ and their derivatives have n - k zeros along each such line where
k is the number of differentiations of the errors with respect
to 93. Furthermore, if n is large enough, if the shell thickness

is small enough relative to the distance to the edge and relative




to the geometry of the undeformed shell, if the strains and
displacement gradients are small enough after a simplifying
rigid transformation, and if the prescribed surface tractions
at the faces and their derivatives and the body forces and

their derivatives are small enough, then Eiq’ Ei and their

£?
derivatives are significantly small provided the derivatives
of the Eiq do not have too many differentiations with respect
to 93. In many cases n is large enough for the above if
n > 3. The meaning of "small enough" depends on n and the
strain energy density function. It is also shown that under
the previous restrictions the low degree terms in the displace-
ment polynomials and their derivatives are more significant
than the high degree terms (this is true at least when the
difference in the degrees of the terms is greater than or
equal two).

The most difficult task in showing the above is the
derivation of estimates for the derivatives of the stresses
and displacement gradients. The procedure is to obtain
estimates for the L2 norms for the various functions and use

Sobolev's inequality for a slab to obtain pointwise estimates.

The work of F. Johnl was an indispensible guide in obtaining

1 John, F., Estimates for the Derivatives of the Stresses in

a Thin Shell and Interior Shell Equations, Comm. Pure Appl. Math.,

Vol. XVI1l, 1965, pp. 235-207.




these estimates (although the details of the calculation are
quite different here), and this author acknowledges his
indebtedness to that work. The extent of the indebtedness to
the work of F. John will be clear to everyone familiar with his
work and will not be mentioned further. Appreciation is also
hereby expressed to F. John, J. J. Stoker, and W. T. Koiter

for valuable discussions on the work.

1. Pseudo-tensor notation.2
Consider a fixed rectangular Cartesian reference frame X,
and 1et‘?(el,92) be the position vector from the origin of
this reference frame to the middle undeformed surface.
A middle undeformed surface is considered such that normals
to it do not intersect for |63| < h, whenever h is small enough,
and such that the surface and its boundary are smooth enough
so that subsequent uses of the divergence theorem are valid.
The undeformed shell is then defined to be the region |65] < h.

Letting X be the position vector from the origin to an arbitrary

point (xl,x2,x3) in the shell, we also assume that the middle

e Although several of the quantities introduced here have
established names such as two point tensors or shifters of one
sort or another, the one term "pseudo-tensor" is introduced to
keep the nomenclature to a minimum. See Erickson, J. L.,
Tensor Fields, Handbuch der Physik, Vol. III/1, Springer-Verlag,
1960, pp. 794-8%0.




(1.1) X =T7+6

defines a relationship between the coordinates Xy and ei
which has as many continuous derivatives as needed in the
following, the same belng true for the lnverse relationship.

Let
(1.2) g.. =2 - F., (&) = (g. ), ana B =7

Then the quantities gaB andg gaB are the components of the
usual covariant and contravariant metric tensors for the
middle undeformed surface. Also g}a = g3a = 0 and

=g3_3=1. Finallygi‘j= og,_g’-g —Gg, and'§3='g'3.

The quantities ag and A are defined to be the components

J
of the vectors Ea and El with respect to the reference frame X

as follows:

(1'3) gi = (ai,ai’a?_) y Ei = (A;:,A%’A;)
Then
(1.4)  (a)) = (ADTH, gy = ajay , g = Al .

Given any indexed set of functions associated with the

X-frame, say dij (the number of indices is not important), we
associate indexed sets Dij’ DiJ, Dlj, and DlJ with the curvilinear




coordinates Gi as follows:

_ Sk 4 J _ L K,d
Dij = aiajdkz ’ Di = aiAzdkz ’
i i ijg _ 1,3
D 3= Akajdkz s D = AkAzdkg
When the indexed set dij is symmetric (i.e. dij = dji)’ both

Dl. and D.T will be denoted by D%. The functions d.. and D. .
J J J 1) 1J

(or Dl., DiJ, DlJ) will be called X- and 6-components of the

J
same pseudo-tensor. It is easily seen that Dij = gikaj’
DY = glngszz, etc., so that the quantities glJ and gij can

be used to raise and lower indices of the 6-components of
pseudo-tensors in the same way that the indices of the components
of tensors are raised and lowered using a metric tensor.

Observe that 6ij and gij (or gij, 6§) are X- and 6-components
of the same pseudo-tensor. Also if uy denotes the X-components
of displacement, then uy and Ui are X- and 6-components of the
same pseudo-tensor.

Pseudo-tensors have a contraction principal of the same

sort as ordinary tensors. Let Cij and Cij (or dijk and Dijk)
be X- and 6-components of the same pseudo-tensors. Then

i i i
Cyq = Ci = C N (or diij and Dy 5 are X- and 6-components of

the same pseudo-tensor).

If dij and Dij

Dij'k’ Dij'kz’ etc, are defined to be the 6-components of the

are X- and 6-components of a pseudo-tensor,




od, . b d.
pseudo-tensors having iSQJ , sx .3; s etc. as X-components.
k //

s mn Bd

i.e. Dijlk = ala a ?r—— etc. Indices of Dijlk are raised

and lowered the same as those of the 6-components of other
pseudo-tensors.

It follows immediately that gijlk
Let baﬁ = 3.-§&,B be the components of the second

= 0, glJE( = 0, etc.

fundamental form of the middle undeformed surface (,a means

5%; and ,i will mean.E%;). For convenience let bi} = b31 =0

and raise the indices of the quantities bij Just as if they
were the e—components of a pseudo-tensor. Then let
i i a
(Bj) = (Bj 3 ) fobserve that B3 = Bg =0, Bg =1).
The indices of the Bg are also raised and lowered Jjust as if

they were 6-components of a pseudo-tensor. Then H = §b is the

mean curvature and K = det(bg) is the Gaussian curvature of the

middle undeformed surface. For convenience let C = 1- 2H93+-K6§.
.y . k K —»
Quantities rﬂi. are defined by gl 5= [ 538+ Then also

= —rﬂl"k. The quantities r1;B are the usual Christoffel

symbols for the metric of the middle undeformed surface and

> i L1 i
M3y =Ps5» M55 =-25, 53 =0.

In terms of the X-components of'gi and"g’l one has

k _ g Kk . i _ A
(1.4) a. . = I"‘i.a 5o Ak, = “Ak ]

From X = T7+6 one obtains

363



- k Ky\—
. = . - 6.b,
X 5 = (85 - 83P5)&
so that
/
ox,
i_ ik k
(1.5) )
06; gk
ox.  “kj
N J

If di and Di are X- and 6-components of the same pseudo-

tensor,
D, |. = a¥al adk = afal aer 0 (a8
i'3 i7j BXE i~j Exz Sér k
_ .k g r,t, .8 s ,u
(1.6) = a;a3BLA, (4D, . - [ rADs )
r s
= Bj(Dl r - I—_'irDs)
Similarly
i i 1 .8yoT
(1.7) D |j = (D r Y r“er )Bj .
If dij and Dij are X~ and 6-components

pseudo-tensor,

of the same




pd], = (o  + o™ 4 Fglznim)Bﬁ ,

-

i i i m
sl =075 g+ TP g - r‘mz m)B ,
(1.8)
m
i1k = ®i3,5 = T8 p0ns = 75 Pin)Be »

i i m m 1 2K
j rsz 31 50 B

I
g
+

, etc.

2. Introduction of the classical theory and shell theory.

Let uy denote the X-components of displacement,

1 Bui ou, auk Buk
€5 ='§(axj + ozt 3%, axj)‘be the strains, and let

1jeji , and s

S

(DI-‘-C-I

1 =©31 5 Sp = be the strain

invariants.

3 = €135%5x%ki1

For homogeneous isotropic materials, the strain energy

per unit undeformed volume, W, is a function of s and s

l’ 82, 3’
In order that the strain energy density function agrees to

lowest order terms with that of the linear theory of elasticity,

it follows from Taylor's theorem that

A2 2 3
== s1+u32+W133+W2s s +WBs2 +W451

where A and u are the Lamé constants and W Wg, W3’ and W4

l,

are functions of S1s 8oy and 53 which are assumed to have as

many derivatives as necessary for the following.




Let

W 3 3
ti5 = 357 bijj + 2 35, ej3 +3 355 ®ik%kj

so that

tij = %ekkaij + 2ueij + zij
where zij is quadratic in the ekz with coefficients depending
on the ekz.
Let
. ou,
i i _ __OW
93 = Ok * 35 )% = —su
B(B‘_XJ.)

be the Kirchhoff stresses. The qij are always treated as

functions of the displacement gradients and
all displacements even if the displacements
of elther the shell theory or the classical

Let'§i+ be the X-components of surface

are defined for
are not solutions
theory.

traction (force

per unit undeformed area) on the face 93 = h, and let Ei_ be
the corresponding components on the face 93 = -h.

Let fi be the X-components of body force (force per unit
undeformed volume).

LetEie be the X-components of surface traction (force
per unit undeformed area) at the edge of the shell.

Then the equilibrium equations of the classical theory are

10




(2.1)

and at the boundary

4

a5, = qijnj for 63 =h
. A q; = 4q,:n, f 8 = -h
(2.2) 43 = q340; for 6,
dije = qijnj at the edge

where the n; are the X-components of the unit outer normal
vector to the shell.

Now let capital letters denote the 6-components of
pseudo-tensors whose X-components are denoted by the lower
case letters. Then, using the contraction principal for

pseudo-tensors, the classical theory becomes

’

QlJlj +F =0,
‘§i+ = Q13 for 93 =h
(2.3) 9
EF_ = -Qi3 for 63 = -h
\ T, = o', at the edge

since Na = 0, N3 = *+]1 for 63 = *h and N3 = 0 on the edge.

To obtain the shell theory, consider the potential energy

L — _ _
& = ff (W-fiui)dv—ff qi+uids-ff q; _u;ds - ff q; U448

shell 63=h 63=-h edge

11




where dv is the undeformed volume element and dS is the
undeformed area element. Letting a supper dot denote the

variation, the requirement thatzf is stationary becomes

fff 3 3— Jav. - ff v, 08

shell

[] a5 - [[ 000 =0

63=-h edge

After using the divergence theorem, this becomes

JCC[ 19 + f3)uzav + JC[ (ay 475 - q;,)u;4s

shell 63—h

+ (q;:n; - @, Ju.ds + (q: N, - Q.. )u.dS
1J J 1 1 1373 ie’ i

63=-h edge

Using the contraction principal and the fact that the Ui
are the 6-components of the pseudo-tensor whose X-components

are the u;, one has

‘[Yi(Qlj] + Fh )U av + u[[ lJN -'§i+)ﬁids

shell

+ ff (QlJN - )U ds + ff lJN —Eie)tjids

=-h
93 edge

12




Since Na = 0, N3 = t1 for 93 = th and Nj = 0 on the edge,

the above becomes

fff(qlJl +F)U dv + ff(Q13 ot )U das

shell

[ @®+gtves + [ @, - @uges

9 =-h edge

But dv = CdAd6. and dS = CdA for 6, = *th where dA is the

3 3

element of undeformed area on the middle surface. Also

as = das a6 at the edge where A= Wa - 26550 + 6 b°’b7n3x7,
xaga = K&Qa is the unit tangent vector to the boundary curve
on the undeformed middle surface, and s is the undeformed arc
length of the boundary curve on the middle surface. In addition,

for the displacements admitted into the potential energy to

obtain the shell theory,

n n+1
- - k - i waan L] k
Ua = Z Uake3 s U3 = Z U3k93
k=0 k=0

where Uak and U3k are arbitrary functions of 91 and 62.

Hence

15




n h
0 =ff Z g_/- (@] + FG)CGIB{dGB
k=0 ¢ -h

a3

—ol k a3 —=Q k '
* Q¥ - Teesl - 107 4 Q_)CGB]Qj__h}Uak aa

n+1l

h
NIRRT

+ (@7 - P ,)cek) on = (&7 + @ jcel] 3=_§£13de

h
' f kio {fh QBGNOL ) -QBe ! G}B{OdeB}{jﬁkds

n+1l h

+\/‘ kgo{\[ S §3e)e§Qd93}ﬁ3kds :

From this are obtained the equilibrium equations
( n
aj a k ad =a k
+ dée., = -
f (@™ + F)cezde, = [(q Q +)093]93=h

- [(Q%

(2.4)< 4
[ @iy F2)cesae, = [ (@ - ZZ3+)CQ§]93=1’1

+ Qa_)09§]93=-h (k = 0,1,2,...,n)

- 1@ + 53_)ce§193=_h (k = 0,1,2,...,n+1)

N

14




.and the edge boundary conditions

-

? h

i o = K )
! f (Q ESN6 - Q) o5 Ude,
(2.5) ¢ ‘i

| By, - o )05 Qao, -
[ @y - P e ae, = ok
i -h

~

I
O
;;
n
O
-
n
3

0,1,2,...,n+1)

of the shell theory.

Letting
(2.6) q = —%(6, +T) + 5@, - Q)
one has Qi = §i+ when 63 = h and'@i = JQi_ when 93 = -h.
Then the equilibrium equations become
” h
' e-.=h
!j‘ “JI+F'Mm3 3=[(Q°‘3 *)eeS1 2y, (k= 0,1,2,...,n0)
| ~h 3
(2-7){
o I+ 52)cok (3 -Pycek] 5
5‘/;1( |+ )cokas, = ycok ]9 s (K =0,1,2,...,n41).

From these equilibrium equations it follows that

/

h
« . . : =h
f (QlJIJ- + Fl)CPde3 = [ - g )CP]Q3 _h
“n

(2.8)?
h
i i i35 4 O5=h

[ty whe) grass = {1(a” - T )c],aP? e
' -h

etc. where P is an arbitrary polynomial in 63 of degree n if

i # 3 and of degree n+1 if i = 3.

15




Similarly

/" n
| (QiBNB - Q‘ie)ﬂ.Pde3 =0
(2.9) 0
i b ,
'L [(QlﬁNﬁ - T A pasy = 0
-h

etc. at the edge of the shell where P has the same meaning

as above.

3. General comparison of the shell theory and classical theory.

This comparison of the two theories is called a general comparison

because 1t is valid for all solutions to the shell theory, regardless

of the thickness of the shell or the size of the deformation.

This comparison is contained in the following theorem.

Theorem (3.1): Let the displacements U be a solution to

equilibrium equations and surface traction boundary conditions

of the shell theory. Then

ak[(QFth + F)C]
Kk k k

1 2 3

861 892 863

0 at n-k;-1 points (if n- ky-1 > 0) , and

Kr 33
o lle lj - FB)C} = 0 at n- k, points (if n-k
KK, kg at 5 Points (it

>
1 2
391 562 563

> 0)

16



o

along each line which is normal to the middle surface in the

undeformed shell. Also at the edge of the shell

31 (PN, - Q7 2)

T =0atn-k,-1 points (if n- k- 1 > 0), and

2

ds 1593

k 58 =5
(@ "N, -Q )]
B k: = 0 at n-k, points (if n-k, > 0)

3

along each line which is normal to the undeformed middle surface.

K
lelae

The equilibrium equations and edge boundary conditions of

the classical theory may be written as

il
o

(Qijlj-+Fi)C

-gt)e =o .

16
(a'Png - T,

Thus the theorem states that if a solution to the shell
theory is substituted into these equations, both the error and
its derivatives are zero at a stated number of points on each
normal line to the middle surface.

L] +F)c]

kK, k, k
Inpg 2xp 3
96,796, 893

will be given. The rest of the theorem can be proved in a

The proof of the statement about

k- Kk .
> U@ +F)c)

similar manner. ILet E = . For each
)3 k
50,156,
1 2

17



fixed 91, 82 it is assumed that E has isolated zeros. Otherwise
it has infinitely many and the statement of the theorem for E

is trivially true.

First consider the case n > 1 and let P = h2— 9;. From
h
(2.8) one haskf EPde3 = 0. 8Since P is not zero for 193| < h,

-h
it follows that E has at least one zero for |83| < h. Furthermore,
since its zeros are isolated, it has at least one zero where it
changes sign.
Now consider the case n > 2. Assume E has only one zero

where it changes sign, namely 6, = r. Let P = (6 2

h 5 3
Againk/‘ EPdG3 = 0. From the choice of P, the integrand does

2
-r)(h~-62).
) (n° - 63)
not chégge sign. This is a contradiction so that E has at
least two zeros where it changes sign.
Proceeding in this manner, it can be shown that E has

n zeros for |93| < h. Then using the mean value theorem, the

K i
(2], +F)c]
statement of the theorem about T ﬂ n follows.

1 2 3
96,796, 393

4., Certain dependencies.

In deriving estimates for the derivatives of the displacement
gradients and stresses, use will be made of certain dependencies
which exist among them.

Let Li' = —(Ul . +UY i) and Mi' = AL, . 5. .+ 2uL Then

J 2 N , J kk 1J ij®

18




the Lij and Mij would be the strains and stresses if a flat
plate and the linear theory of elasticity were being considered

with Ga = Xg-
i

s = .- M, . . s

Let 855 =9 5~ My; 13,3

of the stress which is due to non-linearity and the curvature

and V.l =M . Then Sij is the part
of the shell. Also Vi would be identically zero if a flat
plate and the linear theory were being considered with zero
body forces and with ea = X,
Let ak(k =1,2,...) be the set of all functions of the types

Sk ak°1sz ak‘lez
KX ’ y Py ey I I, 1
1. 50 K3 120 23 120, 23
591 362 363 361 692 393 891 592 363

where for functions of the first type 1 # 3 and kBis even, or
i=3% and k3 is odd; for functions of the second and third types
33 = 0, or 53 = 1 and at least one of j and ¢ is 3, or 23 is
even and neither or both of j and £ are 3, or 23 is odd and
exactly one of j and 4 are 3. The various cases mentioned are
not all mutually exclusive.

Let bk(k =1,2,...) be the set of all functions of the

above three types with no restrictions on the indices.

Theorem (4.1): For k > 2 every function in a, can be

expressed as a linear combination of functions of the types

k-1 k-2 k-1
o Mij o) Vﬂ o) Srs
k k ? 2 ) J/ ’ T T T
1 2 1 2 3 1 2 3
861 862 Bel 862 393 Bel 892 393

19




where £5 = O, or /s 1s even and £ # 3, or £ is odd and by = 3.

For k > 2 every function in bk can be expressed as a linear

combination of functions of the types

k-1 k-1 k-2 k-1q
M, 5 3 My TV, 3°7s
X, Kk, B % » T, m » 7T
14,2 1,02 15,25 3 1,725,473
26,106,° 0,796,700, 36,726,965 36,736,965

These linear combinations for functions in ak and bk can

be chosen so that the following are true. The derivatives of

SrS occur only in the linear combinations for the derivatives

oF 1y, .

of the Qlj. The linear combinations for — li T (k

1 2 3
881 892 863
involve derivatives of V, which have at most k, -1 differentiations

£ 3

with respect to 93. The linear combinations for U3 do not

3a
3
involve Vz or any of its derivatives. Finally, the linear
i
combinations for T akg ¥ involve derivatives of V, which

/
1yp 25p 3
96,796, 893

have at most k}' 2 differentiations with respect to 63 if

3 2 1)

k3 > 2, and no derivatives of Vz with respect to 93 are involved

if k., < 2.
= %3

A1l linear combinations referred to have constant coeffi-

cients which depend only on A and W.
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To prove the theorem use 1s made of the relations

(%.2)

and

(%.3)

U

M

i
» Jk

ij=7\U

+M -M

1
Mgt M,y Mk, s

A

" e MeexPay T Mg, P T Map, 10500

k

1
+p.(U, 1) .

+ Y
2

,k01J j

From the definitions of Lij and Mij

1

U gk = Doyt lak, g - Tak,a o
-1 oA

Ly =20 M5 - 5551 Mabsy)

and (4.2) follows from these.

Eq.
From the definition of Vi

(4.%)

(4.3) also follows from the definitions of Mij and Lij'

=-M +V

Ms3,3 ia,0 T V1
From (4.2)
( 1 A
W oy =3 Mgyt Moy 6™ Yoy o™ Siamr Mas,y%p™ Mos,6%y
—Mlﬂ,aaﬁ‘r”
_ 1 - N
a3 = 25 Mg 3+ Y30 - M o - Sxgan Mg, 3% ]
1 A
(4.5) S0 o =g (M 5 5 = My + oy My o
3 1 ) A
U7 an =20 sy, + M o - Mg 5 + Siamm Mpg, 308!
3 -1 -
U7 o =20 Ma3 0~ Shrmn Wes,al
3 -1 N S
U7 55 = 31 M35 5~ Snpam Mag, 5!
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The statement of the theorem about the derivatives of

M.. in a, and b

iJ 2
(4.4) into (4.5), the statement of the theorem about the

, is seen to be true from (4.4). Substituting

derivatives of Ul in a, and b2 is seen to be true. The state-

ment of the theorem about the derivatives of Qlj in 8y and b2
follow using the definition of Sij and the statement of the
theorem about the derivatives of Mij'

Differentiating (4.4) and (4.5) with respect to 6, and 6,,
the statement of the theorem is obtained for those derivatives
of Mij and Ul in a3 and b3 in which not all differentiations

are with respect to 6 The statement about the rest of the

3

derivatives of Mij and U’ in a3 and b5 follow from the preceding

and
4 D
M3,33 = Map,p3t Vo, |
% from (4.4)
_ |
| M53,33 = 50,037 V3,3 |
| / .
i N
R 1 N7 4
(4.6) V333 = (My5 55 - N7 33)
> from (4.3)
M = AF L6+ (U +uP )
aB,33 ,k33%ap 331U 433
_
a _ 1 _ A
V33 T a [Maz 337 5,05 * S Myg,] Trom (305
\

The statement of the theorem about the derivatives of Qij

in a3 and b3 follow again from the definition of Sij and from

the statement about the derivatives of Mi in a, and b..

J 5 3
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. The statement of the theorem is proved for functions in

ay and by, exactly as for those in a3 and b3, etc.

5. The parameters used in making estimates, miscellaneous notation

and results.

After picking any point on the middle undeformed surface
away from the edge, the X-axes can be introduced so that the
chosen point will be at the origin and the equation of the middle
undeformed surface will have the form Xz = f(xl,xz) in some

3£(0,0) _

Xa

neighborhood of the origin with £{(0,0) = O and 0.

After an appropriate rigid transformation of the deformed shell
(moving surface tractions and body forces with the deformed shell),
ou,

ou. :
one also has1zi(0,0,0) = 0, and Eii = EE% at ¥ = (0,0,0).

Let Ga = X4 for the remainder of the paper and choose D

so that it is less than or equal the distance from the X,-axis

>
to the boundary of the middle undeformed surface and so that
1 2 2 2
det(g; ;) > 5 for 6] + 65 < D° (observe that det(g;;) =1 at

the origin).
1 1
Choose R so that If,aﬁl il 'f,aﬁyl :_Eg-, etc. for

2 2 2

el + 92 < D" and for as high an order of derivatives as needed

in the following.

Restrict h so that C > 5 for le5] < b and e

2
1

+ eg :.DQ.
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Consider shell thicknesses, surface tractions, body
forces, and displacements which satisfy the equilibrium equations

of the shell theory such that

ou.
h no .2 i 2 o
52% 8% |55 =%" les 51 = 65 »
(5.1) .
agt v6° K i Y62
+ 0 OF < ——29 for 62+6° < D° and

KKy =7k KK, | = [EA 1+05 =

Lael 592 691 392 363

|63|': h and k = 0,1,2,... up to the highest order required in the
following where Y is Young's modulus and 60 is a constant which

satisfies 0 < 6, < 1, which is small enough for the following to be

0
valid, and which depends only on the strain energy W and n.

Let 6 = max(E s = , ﬁéﬁ) so that 6 is a function of
D R

h h h h .. €
the arguments TR’ € For ) and R-flxed, 0 and g are non-
£

decreasing as increases. Let e be the smallest number such that

(
du| e, 3%, yok+
x| 27e legglzes || =Tz e >
j 1.2 ~ o~ h
36,136, 0
3P, voK M@, + ) yok+2
(5.2) K K| S gNE Kk, | S KK ©
26,136, 0 26,6, 0
(
k+1
X0 if k, is even and i # 3
ST © ,
0 or k3 is odd and i = 3
k_1i k+2
3°F Y6 . _ .
ko K| S gkRpeT € K = 0and 1=
36,736,526, 0
Yek € otherwise
oEpEtL
0
k~ _
24




where k = 0,1,2,...
followling.

up to the highest order required in the

From (5.1) 1t follows that 4/ = 8, and hence 6 < &,.

0]
Let d=e—h.
(4
19=9
h
G_f-a
2
e < 62 <-Q§
- —d
(5.3) <
h<d<6D
lﬁ‘:i}%_{ece
1 909
Lﬁ-‘- a

Then listing some results

From (5.2) and the definition of QT,

(

(5.4) ﬁ

Bkﬁg he
Iei|<es =(9(—):
J kl k2 dk+l
801 802
6k§3 €
= d(-gl_{) s | =‘9("§),
‘ d ao]k_'lataz5 d
21’ l = O ,
aeklaek2393 dk+1
€
— If k3 is even and 1 # 3, or
d k, 1s odd and 1 = 3
Oﬁ% 1f7k; = 0 and 1 = 3
k "ek otherwise
hd
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for k = 0,1,2,

2 2 _ .2
6] + 65 < D

notation A =

and |63l <h

. to the highest order needed,

and for

Here and in the following, the

©(B) means A > 0 and B > O and there is a

constant k depending at most on n and W such that A < kB

in the domain under consideration.

The const

to be dimensional for convenience.

ant k is allowed

If the left hand sides of inequalities (5.1) are much

less than the right hand sides, then

4 € will be much less

than 60 and 6 will be much less than 60. Hence both g and
h will be small. Estimates for various quantities will be
ol q
given in terms of ¢, h, and d.
ou,
— l —
Let pij = 5?; tk so that a3 1j tij + pij' Let
E} ’ T; s 23 , and Plj be 6-components of pseudo-tensors whose
X-components are eij’ tij’ zij’ and pij respectively. Also
i
let R.. = E; - L. ..
e RlJ EJ LlJ
Then using the contraction principal for pseudo-tensors,
s .
i 1,1 i ik
E, = .+ 3 + R
; (U |J U7+ U 7T ]J)
1 i ik i J
R..=—U +U +U U|.-U" .-0U° .
i3 5 lJ JI k! IJ »J ,1)
_ i [ | _ plipdpk
8 = Ei s S5 = EjEi R 83 = EjEkE'
i _ ow ow ow k
Tj —-8536'+25—_EJ+36_;EKEJ
55 4 - AE%eY + 2uEl + 2%
=My TR T Y
_ i
= Mij + kakaij + 2uRij + Zj
i i k
P, =0 T,
J I J
i i i
. =T, + P,
< J J J
S'-= i-— -o= » + ~+ i- i'.
1j Q j MlJ XRkkle 2uR 13 ZJ + P j




From the definition of zij’ one has

Z.. = WD, . +W6eij +

ij 571] WTeikekj

where W5, W6, and W7 depend only on 815 5o and 53, and W5

is quadratic in the ekz while W6 is linear in the ekz. Hence
i i i i
. = 6, + .+ W
Zy = Wgby + WeEy 7EkE§ ’
and, in view of s; as given in (5.5), it follows that Z? is

guadratic in the E% with coefficients depending on the

i

When the |E3| are small enough, the equations for the T

Cp ot

R s i : . . . . .
can be inverted giving Ej as a function which is linear in

the T§ with coefficients depending on the Ti. Therefore Z§
is also quadratic in the Ti with coefficients depending on

the Ti if the ]Eé] are small enough.

For i = 0,1,2,... let Gi denote any function of 61, e

2,
such that
/
- o)
(5.6) 3
| 3 ki _ 0(606
k k +
1 2 3 d
661 892 663
.

for k = 0,1,2,... to the highest order needed and for 61, 62,
in the domain being considered.

Then from (5.3)

27
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i7J i+J i
(5.7)
| 656, = G, and 656, = Gy for |05] < h .
N
2. 2 2 |
For 67 + 05 < a°, |f | = 65F 4(%,,8,)] = (9(%) = 6(6,6)

from (5.3). Treating the higher derivatives in a similar

manner, it is seen that T = G

. >
Ja o° Using (5.7) and T = (el,eg,f),

it follows that

gl = (1’O:Go)

ge = (O:l’GO)
—->

Elx g2 = (GO:G’O)l)

= 1+6,

g3 = (GO’GO’1+ GO)

i i\-1
Bap = Gaai-Go (remember o3 = o, g33 = 1)
aBy _ -1 _
(g ) = (gaB) = (6aB+GO)
and therefore
i .1 i i _ ap _
(5.8) aj 6j , Aj 53 > Eap 5a5 , and g BaB are all G,

28




Also

...9 —
bap = 85" Eq,p = O3

by = g7b_, =G

™R

78 1

8ag,y = %1
Yy L% + - = .
Mee =28 (Bg),a* 8ay,p ™ Bap,,) = C1

- Consequently
a i
(5.9) b.j3 ba; & ; and [~ are all G, .
ag F g 7 Sap,y ’ ik 1
B From these
(5.10) C=1+G

a
B, = 5aﬁ+'Go (remember B, = BZ =0, Bg = 1).

3

™R

o 2
1,92,63, then
Hk(A) is used to denote any sum of terms of the sort

3¢

a

If A denotes any set of functions of 6

G (¢ = 0,1,2,...,k) where a is in A. Also 3, (A)

k-4 ) 2
1yp 2
06,706,

is used to denote any sum of terms of the sort
al
G 2 (¢ = 0,1,2,...,k). Then

k-4 J/ /) £
1,720 3
96,796, 693

a

(5.11)
GoH (A) = H (A) , GyTy () = Ty (A)

5 (A) = H (A) E%EJK(A) = g (B) Eg;Hk(A) = Jga (8

29




If A denotes any set of functions of 6.,6 let A

1’ 2’63’

denote the set of all functions a a where a is in A, and let
3

A' denote the set of all functions a i where a is in A.
2

Similarly A denotes the set of functions a A' denotes the

»ap’

set of functions a and A" denotes the set of functions

,ai’?

a for a in A, etc. The notation A(k) will denote A with

»1J
k dots, and A'(k) will denote A with k primes. If A denotes a
single function, A will also be used to denote the set con-
sisting of the one function. Then A, A', etc. have the above

meaning. The notation A 3 denotes the set of all functions
3

a and A denotes the set of all functions a , etc.,
33 »3 503
where a is in A.
Let A,B, and C be sets of functions of 91,62,63.

AB is used to denote the set of all functions ab where a
is in A and b is in B. Similarly the product of more than two
sets is defined.

Notation such as
t
A =BB + BHk(C) + Jk(B)Hz(C)

means each function of A is a linear combination of functions
from the set BB' (with constant coefficients depending at most

on n and W) plus a linear combination of functions from B (with

coefficients of type Hk(C)) plus a linear combination of functions

of type Jk(B)Hz(C) (with constant coefficients depending at

most on n and W).
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Similarly if a is a function, the notation
t
a=BB + BHk(C) + Jk(B)Hz(C) 1

means a is a linear combination of the same type mentioned
above.

Now let U,L,M,E,T,P,Q,R,S,V,F, and Q be the sets of all

i i i i i i =1
U » Lij’ Mij’ EJ-, T,j’ P j, Q, ,j’ Rij’ Sij, Vi’ F » and Q
respectively.

From (1.7),
i _ gl i Bynb _ i R |
U IJ. = (U7 + I"‘ku )BJ. =U" +GU+GU = U ,J.+J1(U)

using (5.9), (5.10), and (5.11). Also

i

)3 + Jl(U)

J - Jegk) _
Ui‘ _gikg Ulz"‘U

g 5 I - 2
using (5.8), (5.11), and By3 = &8 =0, 833 = g3 = 1.

With these and (5.5) one has

r
R

1 t 2
Jl(U) +UU +U Jl(U) + Jl(U)

T=M+R+Z

(5.12) 4 P=U'T + TJ, (V)
S=R+Z+ P

Q=M+S=T+P
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From (5.4) and (5.3)

/
he
H(F) = 6,
€
(5.13) { I(F) = e(—égn)
— { he
I (Q) = 6’(?{7:1) °
\
Frequent use will be made of the following functions. Let
4 954—92 2
yK-3 (6% +62) |°
1 2 1/ 2 2 a
(5.14) ﬁ Ck = |1 - d2 for 91+-9 =< EE:3

where k = 4,5,6,...

LFK = 0 otherwise (k = 1,2,3,...)

Then Ck and its first derivatives are continuous everywhere.
£ will be used to denote any one Ck'

Let A be any finite set of functions of 61,82,63. Then
IAI2 will denote the sum of the squares of all functions in A
with |A| > 0, and ﬂAli will denote the imtegral of |A|2 over
the region where {, # O and 1631 <h (Jal, > 0). The subscript
on A}, is omitted if the range of integration is clear from

the context or if all values of k are permitted.
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Easily established results for the functions Ck are

el =1

Kl = eGvE) = 6F)

(5.15) Y &] = 5(%1'2)
) |&k+l| = 3(%'Ckl)

» for k = 3,4,5,...

1Cal = 0(:;'?’%1)

4

e

If a, b, and ¢ are any positive functions, the notation
a= €E(b) + o(c)

will mean that for each k > 0 there is a constant X > 0O

depending only on k, W, and n such that
a < kb + kc .
Frequent use will be made of the relations
|AB| = €(]a]) + o(]B])

laBll = c(lal) + o(liBl)

where A and B are finite sets of functions.
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Let A = max"Qka"k where the maximum is taken over all
functions a in a . Let B = max"Ckb"k where the maximum is

taken over all functions b in bk' Here k = 1,2,3,...

6. An estimate for the L2 norms of Vi and its derivatives.

In this section the following is established for k > 0.

’
l

| 3%V, i
e ———51I = 0[5'(1@ + IlCM(k+l)II

1 2 )
891 592 593

+ fes B ncJMm)ﬂ

6.1 iif k3 = 0, or if k3 is even and i £ 3, or if k3 is odd
3.

and i

5k+1M

k. . b
v N = o) —fpm +ln ™ )Y e B
Ra¥? o, B k,,k 26, 136,%6
,B 1’72 1 2 3

. s &g 63, 4, (Q) ll]

All integrations are over the region where £ # O and |93| < h.
To establish these, use is made of the expansions in terms

of Legendre polynomials of the various functions.

3




If g(91,92,93) is defined for 1931 < h, let
1

18] o)
By = 25 [ 8(61,9,,05) P (P)a(2) where
-1
k
Pk(x) = -—k:-L-—- —d-ﬁ (x2- l)k is the kth Legendre polynomial.
27k! dx
Then from (2.8)
h
8] 8] 6. = h
a J 2 _ [ a 3 ] 3
{(Q S19 + #ee D) a0y = (@ - e D) N

for k = 0,1,2,...,n.

Since P, (+1) = +1 and P, (-1) = (-1)¥, this becomes

Eei—l {(dlej + Fﬂ)c] - = [(QaB-'QG)C]g}:h

b (-1)k [(Q"‘B- Q“)c]
95=-h

for k= 0,1,...,n.
Since the right hand side does not change as k lncreases

by two's, one obtalns

a 1J _ 2k+1 a 13
[(Q JI + Fa)C](k) = 5o91 [(Q ,jl + Fa)CJ (n) if k+n 1is even
(k=0,1,...,n),

a 1J _ 2k+1 a 1J
[(Q 5' + F“)c] o Py [(Q Ji + I«“)c] (n—l)if k+n is odd

(k=0,1,...,n).
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I3 , 0 ) n 0
) [(@® 513+ #16] ()P () = mr [ (0% 194 5%0¢] ) ). (2Re1)R (2
k=0 k=0

k+n even

- . a 6
b [(%5 19+ ¥ (1) ) (2R ()
k=0
k+n odd

From the identity

(2k+—1)P (x) = Pk+l(x) k l(x) , k>1

one has
4! ) )
Sy _ p! Jy
), (R DR = B )
k=0
k4n even
; (2k+ 1)P( 3) = P'(93)
h = *n'h
n odd
Hence

. 6
[(0%13+ ¥)c] (1) B ()

E[\/15

(6.2)
1 a 1 a ! 93
2k+1 [ JI +FC (k)Pk+1(TT0 .

k=n-1
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n n
— 2] — o
= 3 = ‘ a - ._3_
Ya = ) Va()P®) = ), (@57 Sag, ) () PelR) (from the
k=0 k=0

definitions of siJ. and vi)

!
1=

. e
[0Q™]7 + 3, (@) + 871 )Py () from (6.4)

k=0
= 0
= ) [-0F%+3,(Q) +5"] (1) P (£)
K=0

n
— 1 6 .
+ ZJ Qf%j Pk+l(7%0[(Qaj|J*-Fa)C](k) from (6.2)
k=n-1
n

a , 6
= L[—F +Hy(F) + 31 (Q) + 8] (1 yPy ()
k=0

= 1 ' 93 ' o
+ L 25T P (B Vgt 8 + 31 (Q)+F +Hy(F)] 1y

from (6.4)
For k = n-1, n

: a 3 e s4s
Va(k) = [MQB’B4-u(U ’334-U ,Ba)](k)(from the definitions of Mﬁ )

3
3
Map,p 407 30) (k)

since U% 33 is an (n-2)nd degree polynomial in 63 if n>2

3

and is zero if n = 1.
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Similarly

ntl 6
j a
) [(@517 +7%c] (o rl ) =
k=0
(6.3 n+l : 0
1 ' r 3
k=n

From (1.8), (5.9), and (5.10)

—

@yl = @yt szsz- A
= Q' j+H (@),
(6.4) (@t 19- oty ) = (B+eglE (@) = 5 (Q)
cal,ld = (1+6)et; 5+ By(@) = Ty 5+ 3(a)

!
k =V;+8 +J1(Q)
Considering Vi as a function of displacements, it is seen
that vV, is an nth degree polynomial in 93 and V, is an (n+l)st

5
degree polynomial. Hence
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I

et

Hence

= Z [-F+ T (F)+J.(Q)+ S '], P (:G-?-)
- 0 i (k) k'h

k=0
(6.5) 0
1 ! ) 5 !
Z PRAT Pra1 () Mg g MU 35 +S
k=n-1
+ 30 +F7 +34(F)]
Similarly
n+1l 0
Vy = ) [P (R 43 (@) +5'T 1 Pl)
k=0
n+l
+ Z 2k+1 Py o h)[v +5'+3, (Q+ P +H 0P 5y -
k=n

For K =n, n+1

Vsky = [Mzg g+ 207 oib (420007 o0 0y = (g 0)

since UB B3 and U3 33 are both (n-1)st degree polynomials in
’ >

63. Hence
n+l
L [-F° +J,(F) +3,(Q) + 8 ](k)Pk(—h—)
k=0
(6.6) n+l
Z T kﬂ(ﬂn_)[my3 g+ S +3(Q+ P+ I (FI] -
k=n
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Lemma (6.7): Let A and B be finite sets of functions

(the number depending only on n) such that

b L

3
P; (x)Pk(F)

I P/]a

for every function a in A where each bi is in B, Py is_a kth

degree polynomial whose coefficients depend only on n, and m

depends only on n. Then

(sl

o5 n
k K k
36 136 <30 2

llal

o¥a
kK
36 1360 236 °

for all k for which the derivatives are continuous.

From Bessel's inequality

off J i) el IS s
i

uf\/lé

i-1
so that
h __h
f |a|2d63=0(ZJf b?d%) , and
-h i -h
lal® = oBI)
Hence |[A]l = @(|B]).

4o




m
— = o
Since a =Z' Z‘ (bi,a)(k)pk(%)’ then "A,aﬂ = ﬁ(IB,aH)
i k=0

from the previous argument.

Next observe that for k > 1

l(k) = §+ fbiPk(TE)d('ﬁ') = E‘f bi[Pk-l-l(-ﬁ_) -Pk-l(T)]d(T)
-1 -1

0 0
= %f Py ag; [Pyeyy (1) - Py () 1065
-h

o 0
- _ 1 > 3
= - 'thbi,3[Pk+1(Tf) - Py () )46,

h h
= 2%-T (P1,3) (k1) ~ 7K55 (P1,3) (k1)

. _ t - H _ -
since (2k+ l)Pk(x) = Pk+l(x) Pk-l(x) and Pk+l(il) Pk_l(il) =
But

::*IH

_ )
=), ), PrgPeR)
i k=1

— - 1 1 ' O3
Z Z [?E-l(bi,B)(k-l) T k43 (bi,3)(k+1)]Pk(‘H) .
l =

Then [JA 3“ = o(|B 3|| by the argument used in the first
b4 b4
part of the lemma. The differentiations can be repeated to
obtain the lemma.

From (6.5), (6.6), and the lemma
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¢

5
t—x 13 " [ aB B C ikU 2o
36. lae 5933I 36, 1y gae 3 6,136 23935
k_o ’
K+1
e kla £2 r + s )“*'"CJK+1(Q)"+'" Jk(F)lq
36, 796,°36 >
4 3
(6.7)
k
2, S 36 B ak?
€ Kk, K| - N [ 13} K € I
36,136, 5933 26, ae ae 36,136, 5933

|
|
|
|

L + fes L) 6T, (@] + IICJk(F)Il:I

If ks = 0
3k
30, 189 2

and (6.1) follows from (6.7) for k3 = 0 using (5

If k, =1, Theorem (4.1) gives

c—k——k—» = el 1™y from (4.1

A1) and (5.13).

+ Jev

5 =
R - S
kk e i N TN
260, 136,,° 265 B,y
k
O M ) .
HC xR I = oUlenE )+ pevElp
891 862 863
Thus (6.1) follows for k3 =1 from (6.7) using (6.1) for the
case k3 = 0.
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For k, = 2, Theorem (4.1) gives

3
3 Mg
=] - ernei™ Dy v gy + gl
8611892 205

3V 5 (k+1) (k) {2
2] - ormetety+ 1erty i
Py

1 2
9 39 393
kMB G (k+1) (k) (k) (k-1)
20— = otlen™ e ) sl g e g ertEt
36,136 gaeg a,y

Thus (6.1) follows for k3 = 2 from (6.7) using (6;1) for the
cases k3 = 0,1.

Proceeding in this manner (6.1) is proved for all k

3

T. L2 estimates for functions in the set ﬁ(k).

For k > 3 the following is established:

g, e g = o{*% je a2y 4 L 5 3+ llg R )
HE-1)y

+ [lg, 2

(7.3 + 2l m @0+ Ie @ s e m @)1+ g H o (T

/, JIT et + Vlfff £ L, H (Q)U(k'z)'}

1 h h hys (k-1
+ 0 {-& A+ Ak+(—13Bk_2+ EEBK_1+ %Bk+ 3 e )“}
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where all integrations are over the region where Ck # 0 and
6 < h.
o5l <

Using the divergence theorem,

ff[ CiCQiJU . fU[Ck l. jtC Q )Ui+(c§),GCQian]

JCf Ly cqt U )e = p 46,46, .

From (2.8)

-h
fck (cQ' 50" )e n 99199

=ff CE[C(QiB -'Qi)Ui]z;:k_lh a6 de, +fff e2( C@lUl)
=~[[[ Ci[(Qijlj*'Fi)CUi+-(d@iUi),B].

Thus
fff CiCQiJUi,J
- (CR)Q’aCQian}

=fff{§§[FiUi+ (ﬁiUi)J] + Ci[Hl(Q)+ Hy(F) +J,(Q)]U

+ ciJO(Q)U'— (Qi)’aCQianj from (6.4) and (5.10).

B




By exactly the same argument

VT citea® ) a0y 17, 00y
= l[ZY‘{tﬁ[Fi,ala2...ak_lUi:alaz"’ak—l

+ @t ‘ Ut ) 5]
50 Ope ey 7 ;090500000 o 23

(k-1) 1(k)

+ lm (@ + 8 (1) + 5 @10 efy @

- (8 0(0R%g) o o U g fi

- of e - lffftciﬂkm“““

2 i i
- (Ck)’a(CQ a)’alaz"'ak-lU ,alaz...ak_ll'}

2 2

2 h 2

+ of ;}2 A4 + 'é‘lr Bﬁ_l + %2 B, + Aﬁ) using (5.13) and (5.%).
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Next

I 8 e oo P aag. |

- | @B 0t paa .o P parey. |
T D0 g 1|
[IT§ et vy @npt-?)

- (¢2 i B
(Ck),a(CQ a),Balaz...ak_gU,iala2...ak_2 SI

Oflleyty 1 (@) IF + g, 2T

L[[f (ck (CQ.a) 5a1a2 Ao ?1a Cye e e O _ 2[2+'°(Ak)

using the fact that Lij is a linear combination of the Mkz'

since @' = T +P' = @'+ P1 - Bt = @, + H (Q) + P+ Hy(P)
from (5.8), then CQi CQ 4—H (Q)+—P-+H (P) using (5.10).

L6




Thus
Fr..2 i B8
lf/f (Ck),a(CQ a),ﬁalag...ak_gU ,1(1 a ak 5

L[U{Ckék[Hk_l(Q) +p(k-1) Hk_l(P)]U:(k-l)

2 B
+ (L) 4lce™;) oo 0 e 2“

2 -
C‘gig [y, (P + ﬂckp(k‘1)|12+ [N

2 Qa B
M L[[[ (Ck),a(CQ i),aalag...ak_au ,ialaz...ak_zl:}

2 .
+ of %g HCRU'(k'l)"z]

Using (2.8) and (6.4) again
JIJ @) gtea®y P
B 'fff[(ci),a(cqai,i+C,iQai),BUB+(C12!),a7(cQa7),BUB]
+f (cﬁ)’a[(cq"}),ﬁualzgj_lhdeldeg |
[If feQ) eI +F"-o% )-c %) o
+ (5 L@ gP1 5= (20) o (0% vP)

=f[f£(cﬁ)’a[F“’BUB+ (“Q“, oP) 51

+ L8 [Hy(Q) +Hy (F) +3,(Q@IU +£, £, 3, (AU’

- () gy (00%)) 0P ] .
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By the same argument

2
IR

_ 2

- | u/:[f {(Ck) ,a[Fa,Ba,lag. < Qo Uﬁ,alaz. Qo
+ (@ )

( e R R o Ry | = 3/

w8 B (Q) + 5 (F) + 5,@100 e £ 5 @u ()

- (£ (0%

,Balag. . .ak_2 ,alaa. . .ak_2 }

But

2 QL
V[[ (gk) ,a[Fa,Balaz. . .ak_2+ < ,(33a1a2. . .ak_2]UB,a1a2. e

I ) 0 ey *

+ Q

i

2

:5730«10.2- . -ak_B)Lay,alagu . .G.k_3

= (Q(d E&: ) + ol Elq: HCk]:-:(k-3)]|2] using (5.%)

N

= (9(—-”22_8_ ) + 0'[ —;;E “C}{M(k-B)”z] .
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Thus

l[IY.(Qi),a(CQai),ﬁalaz...ak_QUB,ialaz...ak_el
) Of;éhﬁir [ et st

2 a p
- (Ck),ay(CQ 7),ﬁala2...ak_QU,alaz...ak_E]l}

he he

+ of iﬁ Ickﬁ(k—j)"2+~gm B§_1+~56 B§_2) using (5.4) and
(5.13).

Next
- 2 a B
L[[T.(Qk),ay(cq 7),Bala2...ak_éu 209050y o

_\rr 2 a : B
B L[L[ (ck),ay(cQ 7),Bwala2...ak_3U N L TR

N ffj (t) ,Gy(CQ‘ay) ,Bwa ay. . 'Gk-BLB“”alaa' oy s
- O{U:U (88 + gt ral" Hk-l(Q)]i‘(k‘?)R

= Ol s, _(@[° + Elz;llﬁ(k'”llﬁl + o(ad) .

Collecting results
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2l 1
(7.2) U:/:f £ (CQ j)’a1a2"'ak—lU »J0q 0.y o

2 .
- of i + IBIRE « & 32

d2 2
+ '1'1'2' [ uCka_l(Q)“ + "Ck

* Uff Cin(Q)ﬁ(k—l)‘ ¥ Uff Ckéka(Q)ﬁ(k—g)’}

o 2  h°

1 2
+ 0 {5‘2 A T A+ 30 By o

*(k-1) 2 V12
PEL Ry e m (2317

2 2 2
he _2 h® .2 . hp; . 1(k-1) 42
+ p: B 1 + g B, + 2 [l I } )

1.1 . ..
—2-(U ,j+UJ,i) and the symmetry of T Y,

(o]
4]
.
o
0]
|
Il

i i i ij i i
. : T,+P ,)U" ., = . .
Jd »Jd ( J J) »d (T +GOT+P J)U >d

[
]

ij 1
T Lij +[HO(T) + P]U

[Tj.‘+ Ho(T)ILy 5 + [Hy(T) +PJu’

i 1
TjLiJ' + [HO(T) +P]J]U

= (M; y +R+2)L; 5 + [H (T)+P]U’

MlJ 13 +(R+Z)M+[H (T)+ p)U’

But

_ 2
Mj gLy = Mopglyy + 200505 > 2u|L]
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so that

2

ILI® = oM, 1,5 -
Since |M] = ©(]L]), it follows that
2
IM|© = CKMiJLij)

ii r}
R .+ .
OfQ U+ (R+2)M+ [Hy(T)+PJU
By the same argument

- (k-1),2 { i i
M = &LqQ . U .
l ‘ Jryoq 0. 7 L0500

+ [R'(k'1)+ Z'(k‘l)]ﬁ(k°l)+ [Hk_l(T)+ I'J(k'l)]U'(k)}.

Since
(cat.) vt
J7s0q05. .00y o 5 J0y 05 Oy o
i i 1(k)
=Q . U +H_ ,(Q)U
J’a1a2"'ak-l k-1

,Jalag...ak_l
the above becomes

- (k-1),2 i i
|M( |© = Oﬁcq.) U,
J7500s. .00 4 50 Q5.0 4

+ [R'(k'l)+ Z’(k_l)]ﬁ(k_l)+-[Hk_l(T)4—é(k-l)+-Hk_l(Q)]U'(k{}.

Using this with (7.2), one obtains (7.1).
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8. L, estimates for functions in a, and b

Kk k = 2,3)-

i {

Consider the range 6° + 62 < d° |6 | < h, and let

1 2 -
C = Cl = Cg = Q}'

»Then
4
|xa| = Ieal = O(d) by choice of 6
Bx3 3
|x3| = @(|9i|max]-5ri|) = &[Ieilmax|ak(6 -93bl)|]
= e(lei||vsji+c}o]) = &(h +6,6d) = @(h)
from (1.5) and (5.8-9)
aui d2
lusl = @(llemaﬂg;gl) = ©(F e) from (5.4)
. . 2
lut] = IA;uJ.] = 9(%— e) from (5.8)
1 B
o151 = IA 3—1 = @he)
IUi,J-l = o(|ut ;1 + leyul) = O(% e) = O(6,0) from (5.3)
Bl = lagate, | = ofe) from (5.4)
(8.1)4 |3,(0)] = |6 U +GOU2 | = O(6,0 % e) = ©(e)
IR| = Ol +ﬁ§ e2) = ©(e) from (5.12)
L] = 6(IE] +[R]) = o©(e)
|| = o(|L]) = &(e)
1z| = o(lEl®) = o(’)
Tl = o(|E| + |2Z]) = &(e)
|P| = o(lu'l{T] + ||l (W) ]) = ©(646e) }, from (5.12)
lal = O(|T|+ |p]) = ©(e)
\IS| = o(le|+ [M]) = ©(e)
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From |M| = @(e) and the appendix

e

lerl = oMl + olaleM]) = o(e #/B) + o(ay)
51 = o)
_ ed
w51 = o=
lee'| = e(-EL) + o(aa,)
VB 3 |
lenl = eIl + oCleMld = OHZE) + o(ay)
(8.2) < . . ,
llew s = e(—;/—ﬁ-) since |tM 5| = e(gp)
o' | = &%) + ola)
VR 3
o] = oletlaul + % D] = olo%(a; + 242

2
2 h
= 007, +-——;§EE)
los 0l = eE4R) since M 5] = o(f)

o2 = @(oPa, + D€

N

If A and B are sets of functions, the notation A Coef(B)
will be used to denote a linear combination of the functions
from A with coefficients depending on the functions in B and

on W. Then since |E| = e(eg) from (8.1), Z§ is a quadratic
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function of the Tk with coefficients depending on the Tk and W

for 6, small

RI

i

t

£ 4

enough (see the discussion in section 5). Thus

2

T Coef(T)

TT' Coef(T)

=4J

(TT" + T'?) Coef(T)
(rt"™+ 7'+ T'B) Coef (T)

1 ‘ i
(TTIH + T'T“' + T"2 + Tvz).Tn - L" ) Cc:e'.f'("’f}, ot

ori|T'|) = ol seLe (43

€(|Mm'|) from (4.2)

[7,(0) ] = E(lagu" + oyU" + aul)

0

= e(ogelM'| +3)

S(U) +U'U" + U"Jl(U) +U'3,(U) + 3, (U)I(U) from (5.12)

R'| = el6goM'] + )

'] = e(iM'| + [R'| + [2"|) from (5.12)

e(lu'] +£+05|T'])

d
|T'| = ©(|M'| +%) for 6, small enough
Lzt = 8(62|M'| + B &) from above
(8.4) . . &
] = e(M] + [R'] + [2'])
= o(M| +e,0[M'| + 3)
2| =

el|u'||T]+ [u"|T]+ [T] 3,0 | + |T| 3, (U)]] from
’ 2.1y , he (5.12)
e(eoe|M| + 67 |M'| +E—§)

lp'| = e(eye|M’| +%§)

s'] = ©(|R"'| + |z'] + |P"]) from (5.12)

0(609|M'| +%)

o(|M| +|s']) from (5.12)
o(|M| + e,0(m'| + %)
e(lm'| + [s'])

= em'] +3)
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BTN,

Using (8.2) and (8.4)

7

(8.5) 3

.

From

(8.6)

lew" |
ez |
el
fes*'
leall
lea'

123, (@)

(6.1)

levi

7

Ay

]

ollen'l) = o) + oly)
o(e /R) + o(dAg)

o(Eh + 8

o edA3 )

c(yhe+ GOGdAB)

O(e ¢h + dA3)
0(% + dhy)

oleyellica’ | + zlzald]

eh
O(6,00A; + _aﬁ)

Ole ¥B + fm] + Jes'] + 1egy (]
ole ¥h + dGOGAB) + o(dAj) .

Then from (8.2), (8.5), and (4.1),

ollieMl + 1evl + [es'D
o(e #h + das)
ellem'] + Jevil + lies' I
0(% + dag)

55



Next

|z" | = C(GEIT"I + |T'1?) from (8.3)
2 12 . h%e
= ¢(e71"| + [M'|" + =) from (8.4)
d
lez'l = c(ePer"ll + 6%a; + XIE) from (8.2)
[u™| = ¢(m])
35 (V) = GU"™+ GU" + G U" + G5U
|35 ] = cle,0(|n" +xlM) +§-2]
R" = 35(U)+ U+ u"e+u" g, (U) + U 31 (U) + '35 ()
+ J5(U) + 3, (0)35(U) from (8.4)
R'] = elegor|] + M) e ' %]
ller" ] = (5’(909B3 + Eégﬁ) from (8.2)
el = olleer + &+ 2]
% = e(By + £L8 4 oS )
(8.7)9 > S 0
1 e | = O(Bs + EEZE) for 6, small enough
ezl = ete®ey + 26)
p" =U'T + U"T'+U'"T+TJ3(U)+ T'J,(U)+ 'I‘"Jl(U)
" - e 1 1 2 2 M" 92 1 h2€
| P" | = C(6,0]|T |+ [M'["+07] |+-a-|M|+-54-)
i €
lee | = e(6y0my + XD
les" Il = €Lllg(R" +2" + P") ]
= 08,685 + ETgE)
lea,() 1 = olege(lea’ll + 3 Tea'll + = leall]
= (6,98, +J/§_€)“
I 51 = ©gg il + § oMl + 5 llewy, 510 from (a.k)
= ot +3 4
yi o 00
. e - : )
Herl = ol el + ) iy s leles” L llegp (@)D
i a,pB from (6.1)
! : £ d
K = C(f;E + & A3 + 906B3)
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From (4.1)

B, = ol + ) leitg S0+ lev' ]+ fles" )
a,p
- C(-= + 1 Ay + GgB ) from (8.7)
/i 3
Hence
(8.8) By = c(-f_/H +§ Asg)

for 60 small enough.

Rewriting some results of (8.7) with the aid of (8.8)

and deriving others
/

lew I| = c(B5) = c-(—eﬁ 3 Ag)
n 2
fer' | = o= + o5a,)
ez Il = etogons + 0
ezl = lgM+R"+2")]
= O(Aqg +#)
" _ d €
el = o A5 + /;/E)
P = U'T+U"T +U™T +TJ (U)+'i'J (U)+ T3 (U)
(8.9 . S 2
Ip| = O(GOGITl+%|M'|2+%|M|2+%—|M'|+92|M"|+%q§)
" .
el = oXegons + SR
les" I = otebas + =0
ey () || = OlegeClerll + hetll + zler I
h
= C(GOGA3+Ed )
h
ICHQ(Q) " = O(GOGA3+E d2 )
lea, (P) | = 6(62A3+£i%£§)
d
| le(@)1 = olog; + =4/




By the divergence theorem

U:/:[ CQGO'Q{}‘ = Uff [cz(Glﬁ+ GOE)22+/;éGO§6]

o122 pleu’ [P+ Jou [P+ 10 1)+ oClical)
d

il

2

he 4 2 2
= @(—ag' + GOAB) + O(AB)
Hence

I ey = [ €5t » ot o
o ), 282
' 2 (32 -

- ol + ogh5 + o' 1) + o(a5+ HCQ|2+-§g||CQ||2+§¢i|§Q|§2)
= o(hE2 + 61 A%) + o(Az)
- TTgE 03 3

Similarly
Uf C&Go'é:fl‘ = fo [C&(GII.J+GOG).Q: +(E+ CE)GoéfJ]

.o . 2 -
o1650% (5 licvl® + 1w 12 + 207 + oClcal®)

2
he 2
of ) + o(AZ)
d? 3
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s

N C&HB(Q)ffl = [[[[ EL(GR + G1Q + Goo + G5Q)U
2,2

2 0,67 - - . .
OB + 2 IEIP) + o (a5 + 1eGI° + 5ldl® + pleal®)

o
0(955) + 0(A§)

Collecting terms, (7.1) becomes

el = O(ELE + 65as) + o(ny) .

From (6.1)
v c - '
= OISR+ Jemll + Jes" | + lleap (@) ]
vy Sl
- o= LB s o) + o(hs) -
From (4.1)
Ay = ol + llevl + levy 51+ les' D)

= o(e_a@ + GSAB) + o(A5) .
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Therefore

Ay = o= |
By = ©(—=—) from (8.8)
(8.10) 4 Yh
Ag = Ole VH)
. from (8.6)
B, = (=)
: yB

9. L2 estimates for functions in 2y and b4'

Let £ = ¢, in this section. From (5.15) ¢ = <j(c3g),
. 1 .. 1
el = ofgts), and |l = O(5ts)-

Let
(9.1) M, = max Qlﬁ] and M, = max eiM'] .

Then
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gt = OM] + 6,8M, + )
from (8.4)
elr'l = oMy +3)
g A
lesTl = o=
} from (8.9)
lex™ 1 = o(—
3 /5
. 2
el = o5t
(9.2) 4 from (8.2)
lesM'2) = o4
. 2
les7°1 = oA
d from (8.4%)
lesT2l = oEfR)
IJl(U)I = O(e) from (8.1)
|£3,(U)] = ©(6,6M, + ) from (8.4)

| lles35 (01 = oEZE) £rom (8.7)

From (8.3)

lez™ | = o®ler™]] + lez'™ || + ez .
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But

fer'e | = o(lier'es™ ) = oL, + ) g™ |1
h
C‘)(—-%M;2 + 8?@) from (9.2)

and
1 2 2
lez 2 = edller'esm 2N = oL + 5T e
2
= @(‘EC{/HM2 +-€iduﬁ) from (9.2)
This type of reasoning is used repeatedly to obtain
2 £ eh
AL = O(eleT"" || + —M, + )
ez e |+ o, + £
leay (U1 = Ne(Gpumm +G U™ + G U" +G5U' + GyU) ||
= 0[008(8, + 375 + 38p) + f:_d@] from (8.1)
= 0(9,08, +§E@) from (8.10)
R = 5 (U)+ UM + YU + U T (U) + UM T, (U) + U M™MT (V)
+ U‘JM(U) +J2(U)J3(U)+J1(U)J4(U) from (8.7)
IRl = Oloyem, + SR + Sy
0~k d2 /B 2
“CT”' ” - llc(M||t+Rt||+ler)"
= (9(B4+8 %H + £ M, + 6(2)||CT"' )
d h
leTll = o(By + £ gﬁ + £ M,) for 6, small enough
d
2 £ eh #/h
ezl = (6B + —M, + )
4 /F 2 &
pm = y'rom +y"T +ymmpr 4y +TJ4(U)+T'J3(U) +T"J2(U)

+TMI (V)




lleem | = ©(8,9B, +%@ + )
4h
”CS m " = "C(Rm +Zmppm )"
= O(6,68, + Edg + —=M,)
I 7560 = ologolear | + glea I + e’ Il + Zlicall ))

= Ol6,0(B, + %133 + disz + _Edt’zﬁ)]
= O(6468B, +Egtg_5)
It 51 = O(Ezlbtl, + SICH | + Flwys 5510 from (a.4)

= olazleMl + gay)

d 3
= g4, + )
B TR
el = @(d'i/}-T + Gy + 6,08, + _,%H'ME) from (6.1)
From (4.1)

By = O(leMl + ) lledgg 51+ hov' | + flgsm )
a,p
2

08a, + -5 + 6°B + -EM.)
LRI VHM2

I

and for 90 small enough

£
d ¥k

d €
(4.3) B, = O3, + + —M,) .
) "y VEMQ

Rewriting some of the previous results and deriving others
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llgmr |

lea, (v |
lerm | =

ez |

leT ]

leT ™ i

"o §
[

lep ||

lies il

il

less (T) ]

ler, (@)
“ch (P) " =

a5 (@) Il =

O(B,) = Ogs, +—— + M)

d#h 4
O(6cA, + _%Eed + £ fPy)

0(63A4+€VH+ € M

)
32 /B °

eh ¢h €
@(eoeAlL + d3 + M

2)

"C(ﬁ + R'™M + Z”')"

o, + £4T + <)

d ¥h
e(%ALL + dE;/H + :/HMQ)

U'T + UT 4+ UMT + UMD + TJM(U)+TJ3(U)+TJ2(U)

+ E‘.Jl(U)

h
O(6,08, + € ’(g + £ gHM2 + —%Ml)

olecn, + = VAV

d h

ooo0 (]l + FheTll + herl + Slerih)
©(0,08, + %3@- + 2By )
00,68, + %@)
2
O(GEAM + B 1::‘ LU ——E@Mi o+ _(@e M, )

o(62a, + 8?1’5 v 2Ry )
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Using the divergence theorem,

e

lff [P(Uay +T6) +L L T6,] Q

o165e%(Ie TIF + 11 TIP) + ollic AP -

Since

le vl = O lie; Tl = otg B

£ )
d vh

the above becomes

e = 2
fff C2 U G, Q I = y(ogozBﬁ +P§E) + o(Aﬁ) s

and

[ Py te)w

2,2

2 0.0 eee v
= O(og%8] + 5+~ e UI%) + o(afical®

+ <5 lleal® + 311; leQ® + E% leQl®)

O(650°B + ) + o(ad)

2
,+Al2j. +—d— M ) + O’(Au_)

0—1 + 0

using (9.3).

65



Similarly

[ e

’ff [LE(GoU + 6,0) + (¢ + £2)a,0] &

& 16202 (|1L U)|2+ ?néﬁu% gﬁnﬁnu) 1+0(1t QUI?).
Since

. L L

1L ull = O it ull = P35 By) = 0%—) ,
and

. . 4

lull, = atieull) = P(B,) = (ﬁ()/%
the above becomes

|fff TINE

(y( )+0'(A)_|_ s

and
2.2
. - 2 00
[ ¢ ¢ @) - L

+ oA+ e G2 + 5 182 Zpiai®e Zgical®)

2 1l ,2 1l ,2
ﬂ( )+0'(A ?AB'*'dTAQ)

(y( )+0'(A,+) .
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Next

M) = O~ M) 1y - OLE
I = O Nl - O ) = 0B

Il = CCEMD = (AB,) = Oe ¥R)
. m, _]__ n _ .l _ e
le vl = DG ILu D = O By) = O =) -
Collgcting terms (7.1) becomes
h 2 d
e M| = (-%—5 + Ogh), +7151— My + - Eh M)) + o(ay) .
From (6.1) and the above
. A
vl
_ e Yh 2 _E de
lev, 55l P = d(—dlzC +OGhy My 42 0y) 4 olhy).
v, Sl

J

From Theorem (4.1)

Ay = OUIC Bl + 11EVI + eV, Sl +) ey, sl + fies™ D
a

de
h vh

__.(9(_%‘54.931;4 +‘/_--;—-M‘2+ M) + o(ay) .
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Thus

Ay = ORS¢ &y, 4 de
(9.4) ' a® yE % nyR *
2
B, = Ul e_ & M, +-—%—§— M, )
dvh hvh h° yh
from (9.3).
From (A.5)
' 2
—% 'CM'l = @(”CM "” +? ”M'“}-I- +_l§_2_ ”CM'"“)
2
= (9(B, +-5B,) = O= ed y 4 9%
YRR dﬁh,/—EhE‘ﬁl
2
0,6 o)
vh h vE
so that
- 2 2d
M, = (9(— + o.M, + 05 1 Mp) ;
(9.5) M2 = 690% + Qg % Ml) for 90 small enough.

Also from (A.5)

. : "
Yho o) = O H) + 25 I, + —gucm I
2
=0(A+LA+ B)—(9(J/_E =M, + 9 i
BT g2 4 ® YE 2 nvh 1)
2 6.0
_ 0(/52€+ © M2+—O—M1) .
d Yh Yh
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£ 2
‘9(6 +6,0 M, + 65 M),

o

D5 + (of +02)M, ]

using (9.5). Hence for 9, small enough

M o= O
(9.6)
M, = CO(F)
and from (9.4)
ny = O
(9.3) '
B, = (P(—5—) .
4 avE

10. Pointwlse estimates for functions in ay and bk‘

Continuing to let [ = Cu, (A.5) gives

B gs] = Qlies™ + Slis ) = O EEE)
d d

max |£s'] = (3 -
Also
Olos0(max [La'| +3 max [£Q])]
= C9(% + 0,0 max [£Q'])

I

13, (Q)]
max |CJ1(Q)| = 6962 + 640 max leer]) .
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From (6.5) and (6.6)
|ev] = Olmax |eM| + max |£S'] + max €3 ()] + max |F|]
= (M) + % + 0,0 max [£Q']) 3
max |LV| = 0(-‘3 + 6,0 max [£Q']) .
From Theorem (4.1) for a in a,,
ltal = O (max |tM| + max £V + max |¢s'|)
= Olg + 6,0 max [2Q'])

and far b in b2

leb] = (O + 6,0 max [£Q']) .

Therefore
max |£Q'| = (£ +9§ max [¢Q']|)
max |[£Q'[| = CQ(%) for 6, small enough |,
so that
= £
lta]| = C?(d) for a in a,,
and
= £
|to] = O(F) for b in b, .
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. Hence for 7/O§ + Og < 3/4 and lg3l = h,

- £
la| = (p(d) for a in a,

(10.1)
Ib] = &(—%) for b in b, .

Since bui/bxJ = auj/axi and at = al - 53' at the origin,

J J
1t follows that UT| y = du;/dx; and vl g = UJ|, at the origin.
i 3 11 Iy _
Thus U7y = U7y + 33(0), Ly =5(07, +09)) UT, + 3y (0),
and |U'| = 0[]L|+|J1(U)|] = (I(e) at the origin.
By Taylor's theorem
0
Wy = U‘j‘s(o 0,0) +0,0%,(5,,6,,5;)
>
Ul = (o 0,0) + 6,U 31(91, 2,0 ) .
From (10.1) and the fact that |U'| = O(e) at the origin,
1] = O(e) —s
, 4
for Y] +6; <g and 6] < n .
3 - > =
0751 = Ofe) o

Since also |M| = O(e), |ol = (), |u'| =0 &),
1t follows that

la] = @(e) for a in a
1 when )'024025%, le
bl = (9(% e) for b in by

Estimates can now be obtalned for the L2 norms of functions

in a5 and b5 and pointwise estimates can then be obtained for

the functions in a, and b3, the procedure being similar to

3
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the work done in Sections 9 and 10. Continuing in this
manner, pointwise estimates can be obtalned for functions
in ay and bk for k as large as one pleases.

Actually, the calculation of L2 estimates for functions
in ay and bk is easier for k > 6 since quantities
such as Ml and M2 do not need to be introduced as in the

cases k = 4,5. The pointwise estimates obtained are

_ €
la] = <9(dk—1) for a in a,
(10.2)

bl = (J(—E£—5) for b in b

h d

il

k

3| < h, and 'Y6§+Og small enough.

The value of QO and the constants in the order relations

for k > 1, |6

(10.2) depend of course on the largest value for k for

which one wants (10.2) to be valid.

11. Special comparison of the shell theory with the
classical theory, some lmproved estimates, and the
importance of the low degree terms in the displacements.

The comparison with the classlcal theory made in this
section is called special, because it 1s valld under more
restrictive conditions than the comparison made in Sectlon 3.

The comparison 1s given by
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. h 3 £
ak(Qajl‘] + ) (d) ——dk+1 if n is odd
kl k2 k3 - C’) h n-k3-2 e
BQl 892 593 (Ti') ;T—FT if n is even
if n—kj-liz 0, and
(11.1)ﬂ ' T S
Bk(ijlJ + FB) 0 (a) -(;m if n is odd
| - U n-k_-1
1 2 3 h > E
891 692 593 (-a-) -:i-m if n 1s even
if n-k3‘3 o .
.
( K, Sa hyn e 415 1s 0dd
o7 (Q7;- Q%) _ 0 d’ 4K
aokl 3@k2 (h)n—l —E_ if n is even
1 2 ©.,=+h d k
3= d
(11.2) {
h.n+l €
_ (=) = if n is odd
*(e2,-2%) d a*
=
kK
t ag1 ag2 03 th (g)n _t:l-c if n is even
d
all of which are valid for |65 < h and for of +o5

small enough.

The improved estimates of this sectlon are
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( akC{.

Q
—_ 2 | _ h e
kl k2 0(d dk)
aol 892
__aki _ (g(h £
kl k2 - d .k
aol 892
(11.3) <P )
E k|- Ol =]
801 5
"akQ33, ) (Q(E .
K E2 - d " gk+l
L 891 692

The importance of the low degree terms in the displace-
ments and thelr derivatives 1s given by (11.4).
1 1 1,93,k
Here U[k] 1s defined by U™ = E U[k] (—h—-) .
k

azUa (g)k'1 ——%:T for k odd
___1__l£% - a
8@11 892 (-E)k ’?TI for k even
(11.4) <
azU[3k bk —%—1 for k odd
zl }2 ) m h k—ld £
k 891 892 -a) —EI:T for k even
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If a solution to the shell equations 1s substituted into
the equilibrium equations (2.3) of the classical theory, then
(11.1) gives estimates for the errors and those derivatilves
which do not have too many differentlations with respect to 03.
If the stresses, body forces, and their derivatives which
appear in (11.1) are not of lower order than indicated by
(10.2), (11.3), and (5.4), then (11.1) is significant if it

gives lower Order results than the aforementioned estimates.

i
JsJ

example that when n = 3 the first estimate 1s significant

Since Qijlj =Q + Hl(Q) from (6.4), it follows for

for k3 = 0,1 and the second estimate 1s significant for

k3 = 0,1,2. For the above cases the estimates are smaller

by a factor of (h/d)2 than the estimates using (10.2), (11.3),

and (5.4). Furthermore,using this criterion, estimates (11.1)

are not significant for any valué of k3 when n = 1,2.
Similarly if a solution to the shell equations is

substituted into the boundary conditions (2.3) of the

classical theory for 03 = + h, then (11.2) gives estimates

for the errors and thelr derivatives. If the stresses,

surface tractions, and theilr derivatives which appear in (11.2)

are not of lower order than indicated by (11.3) and (5.4),

then (11.2) is significant if it gives lower order results

than the aforementioned estimates. Thus (11.2) is significant

for n = 3, the estimates being smaller by a factor of (h/d)2

than those obtained using (11.3) and (5.4%). Again (11.2) is

not significant, according to this criterion, if n = 1,2.
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In the exceptional cases where the stresses, body forces,
surface tractlons, and thelr derivatives appearing in (11.1-2)
are of lower order than indicated by (10.2), (11.3), and (5.%4),
the estimates (11.1-2) will still be significant for n large
enough; however, barring these exceptional cases, (11.1-2)
are significant for n > 3.

From (11.3) it is seen that the transverse shear stress
QQBand its derivatives fangent to the middle surface are of
lower order than has been claimed for the other stresses and
thelr derivatives tangent to the middle surface. Also the

transverse normal stress Q3 is approximately equal to the

3
function which varies linearly between the prescribed
transverse normal stresses at the faces, the same result
being true for the derivatives of the transverse normal stress
tangent to the middle surface. These results are analogous to
results shown to be true for solutions to the classical theory
when the surface tractions and body forces are‘zero [see p.3,ft].
Finally (11.4) shows that the lower degree terms in the

displacements and their derivatives will dominate the higher

degree terms.

i

j_
¥ =93,

To prove (11.1) first observe that Qi + Hl(Q)

J
from (6.%) and hence from (10.2)

= if k, = O, or
K+1 3

kK 1 .3 d if 1 # 3 and ks is even, or
o Q Jl _ if 1 = 3 and k, 1s odd;
e ¢ 3
396,70, 593 = = 1f 1 # 3 and k, 1s odd, or
h d if 1 = 3 and k3 is even.
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Using (5.4) and (5.10) in addition to the above

€ —
K 5 _— -dm- if k3 =0, or
T (@ j|J+F )C] if 1 # 3 and ky 1s even. or
(11.5) K, & = 1f 1 = 3 and kK. 1s odd;
36,730,730 . 5
T if 1 # 3 and k3 is odd, or
hd 1f 1 = 3 and kj 1s even.
From Theorem (3.1) and the mean value theorem, one
obtains
K 3 k+n—k3-1 .
U (™, 17+ F*)e) n-k,-1 d [(Q%,|'+F%)C]
oL =0{n 2 max J
kK LK K K, K naa
06, 96, 593 |93|:h 30, 08, 593
if n—k3—1 > O, and
. kin-k
32| I )e n-ky 3 21T )e)
==L? h max
3.1 30-2 303 loL|<n aokl 30.2 3D
1 2 3 35— 1 2 3
if n—k3 > O. These are also trivially true when n-k3-1 =0
and n-—k3 = 0 respectively.
Using (11.5) these become
n-k_-1
/s h 3 €
s (=) ——— if n is odd
| k. k. k= |
& LN T hyn-k=-2 € :
8@1 892 603 (E) 3 ‘Eﬁii if n is even
cy {if n-k;-1 > O, and _
(111 Bk _ Lg)n “ E - if n is odd
377,17+ 7] d
kK, kK, Kk - n-k,-1
Isa 2h B h 3 E__ 15
891 692 693 (d) dk+1 if n is even
\}f n—k3 >0
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Now let n be odd. From (11.6)

|(Q°‘J4|J+Fa)0| o1t &
and

@1+ ) = O™ &

since C > 1/2 (see Section 5). This is the first formula
of (11.1) when k = O and n is odd.

Next for n odd
a (J \ (o a J
[, 19 +¥e] ;= (@] + ) 0+ (@7 +F) @

Hence from (11.6) and the above

n-2
(@@, 194 ol = @ L& 551, [, 19) cl-0l@) S,
J sB d d d2
and
@19+ #) | = 0L S, 117 + 7)) 4l=01@" " =5
J 3° J d a
Proceeding in this manner the remainder of (11.1) can be
proved.

From (2.7)
' h
- a]
1 i 1 1 1
ety @M)Clg gy = 3 [ (@%,17 + Phc(1 £ g2)a0,

With this and (11.6), one has
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( ak[QG'}—éa)C] (%)ng’i—c if n is odd
30- 130, 2 - Y nn-1 ¢
1 772 Ojﬁih (3) ;E if n 1s even
(11.7) 7

n+l1
ak[(q33- %101 ) (%) _dET‘ if n 1is odd

69k189k2 i hyn €
1772 GB;ih (3) EE if n is even

Then (11.2) follows from (11.7) in the same way that
(11.1) followed from (11.6).
Next from (11.2) and (5.4)

3 _ (¢th € _
1(]- k2 - O(EdT) fOr n = 1,2,0.-
L

so that from Taylor's theorem

—kl—‘% =@ —rc—}lg +h max |—p—2e2
1 1 2
99, %6, 90,;~ 96, o l03|_§h 30, 06,
>
= 0 5

giving the first part of (11.3).
Using (10.2) and (5.12), it can be shown that

Iﬁ(k)|=d(§:—k). Since @1, =71 +p) -l ypl, _p 1

3= Ty PPy =Qy +Py =Py,
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i _ A3
then Q i~ Q i + GOQ + P + GOP. Thus

Kk 3 K 0

_jl_fig__ = o 4 > 4+ H (Q) + é(k) + H, (P)
N TN K k‘\P)

a@ll 8922 8911 5922

and the second part of (11.3) follows.
The third part of (11.3) follows from (11.2) and
Taylor's theorem.

From Q3_3|3 = Q33 3 (11.1), the second part of (11.3),

and (5.4),
k 3 Kind 1o, 3
LA N S S G Ll | NS S
kl k2 a dk+l Vkl k2 B d dk+1
391 592 ~ 891 592

This completes the proof of (11.3).

To obtain (11.4) one simply observes that

St e b gl
Z % = k! 7 )
1 2 1 o) k
39,7 39, 3, 3, 2, le,-0

1 2 3 3

2
and uses (10.2) if f4k > O, and |U] =0(%— g) if
£4k = 0, 1 = 3.

If k+£ = 0 and 1 = g, (11.4) follows from

U = @Tlle,l IGI;T_}_:h [u® ;11 = O (ge)
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Appendix

Here are presented five trivial modifications of results
from the appendix in [see p. 3, ft.], and an easily proved
result for polynomlals.

Let A be a finite set of functlons of 91,02,93 defined
in the region where {, £ O and |93| < h.

Let £ = £, and A = sup |A]. Then

(a.1) lleall = O lIall) + otlle All)

(a.2) Al = % Ially) + otalig AlD

(A.3) lea®) = Jracie ) +? Al

(a.4) A 5l = OF5 Al + 5 g Al + 3 llea 0D

. 2
(n.5) LE [eal = OUIE R+ 25 Al + 25 liea 5500

(Sobolev's inequality).

If in addition the functions in A are all polynomials

in 93 whose degree depends only on n, then

(A.6) A 5l = dig) for |os =< .
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To prove (A.6), let a be a polynomial in A whose

degree is m (then m depends on n). Say

e
_ 31
a=) Pilg)

[~

1l
O

i

Let a, be the value of a for @3 =-% h (i=0,1,...,m).

Then

m
Z —ﬁil- , 1=0,1,...,m .

Treating the above as a system of linear equations with
the bj as unknowns, 1t is well known that the determinant of
coefficients 1s not zero so that the bj are linear combinations
of the ay- Since the coefficients of the above equations
depend only on m (and hence only on n), each bi is a linear

combination of the a, with coefficients depending only on n.

J
Hence
o1 = O max lag]) = O( max |a]) = O(A),
0<Jj=<m |93_§h
i=20,1,...,m.
But

O<i<m

m o -
|a,3] = |2%bi(—h§)i—1l C9(h max Ibil) = 0(%) s
=1
so that (A.6) is established.
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equations and surface traction boundary conditions of the shell
theory.

The shell theory is compared with the classical three
dimensional theory by examining the errors which result when
displacements satisfying the equilibrium equations and surface
traction boundary conditions of the shell theory are substituted
into those of the classical three dimensional theory. IlLet Eq,

Ee and Ef denote any error resulting from an equilibrium equation,
a surface traction boundary condition at the edge, and a surface .
traction boundary condition at a face, respectively, of the
classical theory. It is shown that Eq, Ee and thelir derivatives
have a stated number of zeros along each line normal to the middle
surface, the number of zeros depending on n and the number of
differentiations of the error with respect to 93. Furthermore,

if the shell thickness and deformation are small enough, and if
the body forces and surface tractions at the faces and theilr
derivatives are small enough, then, at points not too near the
edge, Ef and its derivatives are significantly small if n 1s large
enough, and Eq and its derivatives are significantly small
throughout the thickness if n 1s large enough and there are not
too many differentiations of Eq with respect to 93. Also, under
the previous restrictions, the low degree terms in the displace-
ment polynomials and their derivatives are more significant than
the high degree terms at points not too near the edge (at least
this is always true if the difference in degrees‘of the two terms

is greater than or equal two).
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